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Diffraction by Crystals with Planar Faults. II. Magnesium Fluorogermanate 
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Continuous streaks and the displacement of diffraction maxima from the perfect-crystal positions, 
observed in electron diffraction patterns of magnesium fluorogermanate suggest the existence of planar 
faults at which the c-axis dimension of the unit cell is contracted by 25 %. High-resolution electron 
microscope images of thin crystals confirm this deduction. It is shown that even in the presence of strong 
dynamical-diffraction effects, electron diffraction patterns from thin crystals can be interpreted, within 
well defined limitations, by use of a kinematical theory such as is given in part I [Cowley (1976). Acta 
Cryst. A32, 83-87]. Using this kinematical theory calculations of diffraction intensity are made for 
reasonable assumptions of the form of the faults. The effect of the modification of the structure at the 
fault planes on the peak intensities is shown to be small so that structure analyses based on peak in- 
tensities only should give the structure of the unfaulted crystal. 

1. Introduction 

Clear evidence of planar faulting appeared in electron 
diffraction patterns of magnesium fluorogermanate 
supplied to the author by Dr Peter Kunzmann and 
subsequently in similar patterns and electron micro- 
scope images obtained by Sumio Iijima. Continuous 
streaks appeared parallel to the c axis and there were 
systematic displacements of broadened intensity peaks 
away from the positions of the diffraction peaks for 
unfaulted crystals. These observations seemed to 
provide clear examples of the type of effects reported 
for many cases of diffraction from extended defects 
in crystals. An analysis of the patterns was therefore 
undertaken by use of a formulation of the diffraction 
problem in terms of a generalized Patterson function. 
A generalization of this formulation is reported in part 
I of this series (Cowley, 1976). 

The structure analysis carried out by Bless, Von 
Dreele, Kostiner & Hughes (1972) shows that, on one 
plane of atoms, perpendicular to the e axis, the 
germanium-atom positions have an occupancy factor 
of only 0.35, associated with the replacement of neigh- 
boring oxygen atoms by fluorine. It appeared probable 
that the planar faults observed to occur perpendicular 
to the c axis could involve the omission of the plane 
containing these partially occupied germanium posi- 
tions. The question therefore arose as to whether the 
existence of such faults could influence the results of a 
structure analysis carried out with the usual assump- 
tion of a perfect, unfaulted lattice. It seemed intuitively 
obvious that if, in a fraction a of the unit cells, a fault 
occurred such that the germanium atoms were missing, 
the structure analysis should show an occupancy 1 -  
for the corresponding sites. Calculations of intensity 
were required to test this conclusion. 

2. Experimental observations 

The electron diffraction pattern provided by Peter 
Kunzmann is reproduced as Fig. 1. This shows the Okl 

reciprocal-lattice plane of the orthorhombic unit cell; 
a=14.343(1),  b=10.196(1), c=5.9075 (4) A (Bless 
et al., 1972). Sharp streaks appear parallel to the c* 
axis. The diffraction spots are sharp for the reflections 
corresponding to the periodicities of the close-packed 
oxygen (and fluorine) sublattice. Along the c* axis, the 
0,0,4n spots are sharp. The 0,0,4n +1 reflections are 
broadened and displaced away from the 0, 0, 4n reflec- 
tions. The 0,0,4n_+ 2 reflections are more broadened 
but undisplaced. From this one may conclude that the 
close-packed stacking of the oxygen (and fluorine) 
atoms is unaffected by faulting. The structure defined 
by the cation positions has planar faults perpendicular 
to the c* axis. The nature of the faults is such that the 
average cell dimension is reduced, giving an outward 
displacement of the 001 and equivalent reflections, i.e., 
when the fault planes occur some fraction of the unit 
cell content is subtracted. Since the 0,0,4n reflections 
are sharp, this fraction must be one quarter. 

The content of the magnesium fluorogermanate unit 
cell (Bless et al., 1972), as viewed down the a axis, is 
suggested in Fig. 2. The cations are distributed on four 
planes, labelled A , B , C , D  with z values 0, 0.25, 0.50 
and 0-75. Plane A contains 6 Ge and 4 Mg; planes B 
and D contain 8 Mg. In plane C the Ge positions have 
fractional occupancy, r, so that the content is 4r Ge 
and 8 Mg. 

If at the faults one of these planes of atoms is 
omitted, the unit-cell c dimension will be reduced by 
one quarter. As illustrated in Fig. 2, the unit-cell origin 
will be shifted by the shift vector S, which is the transla- 
tion vector for the close-packed oxygen sublattice. This 
type of fault is then completely consistent with the form 
of the diffraction pattern, Fig. 1. 

Omission of either the A or the C layer of cations 
from the unit cell (but not the B or D layer) would 
allow a reasonable juxaposition of its neighbor layers 
without any rearrangements of atoms. Omission of the 
C layer seems more likely than the omission of the A 
layer because the C layer could well be made unstable 
by fluctuations of the Ge occupancy. 
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Fig. 1. Electron diffraction pattern from a thin crystal of mag- 
nesium fluorogermanate,  taken with the beam parallel to the 
a axis, showing the streaks parallel to the c* axis. (Courtesy 
of  Dr Peter Kunzmann. )  

Fig. 3. Electron micrograph of  a thin crystal of  magnes ium f luorogermanate  obtained with the beam parallel to the [110] direction, 
showing the planar  faults perpendicular  to the e axis. The magnification can be deduced f rom the periodicity c = 5.91 ,/~, clearly 
seen between the faults. 
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The proposed form for the planar faults was sub- 
sequently confirmed by the high-resolution electron 
micrographs of thin crystals obtained by Sumio Iijima 
using the modified JEM-100B electron microscope 
(Iijima, 1971; Cowley & Iijima, 1975). Fig. 3, for 
example, shows clearly the contraction of the unit cells 
at the fault planes and the translation of the lattice 
across the faults. Electron micrographs of crystals in 
this and other orientations showed a variety of faults, 
out-of-phase domain configurations and so on, which 
will be the subject of a future publication. 

3. Dynamical diffraction effects 

It is well known that the intensities of electron diffrac- 
tion patterns are strongly affected by n-beam dynam- 
ical diffraction. Intensities of reflections vary rapidly 
and, seemingly, erratically with crystal thickness and 
orientation and can be calculated and interpreted only 
under special conditions for which values of these 
variables are well defined (Cowley, 1969). The assump- 
tion that intensity variations in electron diffraction 
patterns can be interpreted in terms of fault configura- 
tions as if the diffraction process were kinematical 
therefore needs to be justified. In the present case a 
justification can be given within definable limitations. 

When sharp streaks due to planar faults appear in 
electron diffraction patterns from thin crystals, the 
incident electron beam is very nearly parallel to the 
fault planes, as suggested in Fig. 4. The wave function 
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Fig. 2. Diagram of the structure of magnesium fluorogermanate 
(Bless et al., 1972) indicating the four planes of cations, 
labelled A, B, C,D. 

Vo(X'y) 

Fig. 4. Application of the column approximation to formula- 
tion of the scattering equation for a thin crystal having faults 
parallel to the beam direction. 

at the exit face of the crystal is given with good 
accuracy, by applying the 'column approximation'. 
For 100 keV electrons and crystals a few hundred A 
thick, the wave function at any point of the exit surface 
is determined by the content of the column of crystal 
above it and the diameter of this column is 5 to 10 A. 
For regions between faults, the exit wave function will 
have the periodicity and symmetry of the projection 
of the crystal lattice and will give contributions to the 
diffraction amplitudes described by the structure 
amplitudes F(u), given by Fourier transform of the 
wave function within one periodicity and so a con- 
tinuous function of the reciprocal-space vector u. For 
very weak scattering these will be the kinematical 
structure amplitudes Fk(u). For stronger scattering 
these will be dynamical scattering amplitudes, Fa(u). 
At the positions of the faults, the perturbation of the 
periodicity will extend over a region of width 5 to 
10 A at most. The perturbed regions will contribute 
kinematical or dynamical contributions, Gk(u) or 
Gd(n), to the diffraction amplitudes. 

If the average separation of faults is much greater 
than 10 A, the contributions from the fault regions can 
be neglected, particularly in the light of the results 
obtained below. The main features of the diffraction 
pattern will be determined by the distribution of faults 
and the nature of the discontinuities of the lattice at the 
faults and may be described by a distribution function 
D(r) or its Fourier transform D(u). Then it can be 
shown readily that the intensity in the diffraction 
pattern may be written 

I(u) = IF(u)l ~ . O(u) .  (1) 

The function D(u) derives from the deviations from 
periodicity of the array of unit cells, i.e., it depends on 
the relationships of vectors which are of greater 
magnitude than the unit-cell dimensions, and therefore 
D(u) will determine the fine-scale intensity distribution 
about the reciprocal-lattice points. 

The function IF(n)[ z, will vary slowly compared with 
the reciprocal-lattice dimensions since it is given by 
Fourier transform of the wave-function fluctuations 
within a unit cell. The differences between Fk(u) and 
Fd(u) will therefore affect the relative intensities of the 
various diffraction maxima but not the shapes or dis- 
placements of the maxima or the form of the streaking. 

It may be concluded that, for cases such as this, the 
presence of dynamical diffraction effects will not 
falsify deductions made using kinematical theory to 
interpret the form of the streaking and the broadening 
and displacement of the peaks. It will complicate 
deductions regarding the arrangement of atoms in the 
unfaulted or faulted regions. 

4. Kinematical intensity expressions 

It was shown in part I that the intensity of diffraction 
as a function of the reciprocal-space vector u, is given 
for this type of faulting situation as 
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I(u)/N=c~(1-~) [IFp(1-cos 2nu.  S) 
+ (Re  F ' G )  {1 +cos  2nu.  ( R + S )  
-cos 2nu.  R - c o s  2nu.  S} 
-(Im F ' G )  {sin 2nu.  R 
+ ( 1 - 2 c 0  sin 2nu.  S - s i n  2nu.  (R+S)}  
+ lG le (1 - cos  2rm. R)] 
x [1 --CX+O~2-- (1 --0 0 COS 2Zm. R 
- c~ cos 2zm. (R + S) + ~(1 - ~) cos 2rm. S]- 1, 

(2) 

where F(u) is the structure amplitude for the normal 
layer which has translation vector R and G(u) is the 
Fourier transform of the addition to the scattering 
function at the fault. The faults occur with a prob- 
ability ~ and involve a shift in the unit-cell origin by a 
vector S. 

For the case of magnesium fluorogermanate, we may 
ignore the oxygen-fluorine contributions entirely, take 
the origin of the unit cell at some convenient point in 
the C layer and write 

F(u) = Fc + 2F~ cos 2nu.  (R/4) + Fa cos 2nu.  (R/2), 
a (u)=Fa[exp {2zciu. (R/4)}-exp  {2rciu. (R/2)}I 

+ FB[1 --exp {2zciu. (R/4)}]-  Fc ,  (3) 

where FA, F~(=FD) and Fc are the structure am- 
plitudes for the A,B, C layers indicated in Fig. 2. 

For convenience we deal only with the 001 line in 
reciprocal space and calculate intensities as a function 
of the continuous variable l. Then u .  R = l and S = 
-R/4. Since we will not be concerned with accurate 
intensity values but only the form of the intensity 
distribution, we make the approximation fee = 
2fMg-- 2fM. Then 

F(I)=8fM[1 + r  + 2 cos zffl/2) + 2 cos zd], 
G(l) = - 8fM[r + cos ~ l -  i sin nl], (4) 

where r is the occupancy factor for the germanium 
sites in the C layer. 

With this simplified model, the curves of Fig. 5 were 
calculated. Fig. 5(a) shows the form of the D(u) 
function of (1), calculated for G =  0 and c¢ = 0.2. This is 
seen to represent the general form of the scattering 
well, with the 001 reflection broadened and displaced 
outwards, and the 002 reflection broadened twice as 
much but not displaced. Figs. 5(b) and 5(c) were cal- 
culated for the more extreme case of~ = 0.3, with r = 0.5 
and 0.35 respectively. In each case the intensity cal- 
culated from the full expression (2) is compared with 
that calculated for G=0.  The overall decrease of 
intensities with l due to the form offra has not been 
included. 

5. Conclusions 
Comparison of the calculated curves, Fig. 5, shows 
agreement with the observations such as Fig. 1. For 

the particular pattern, Fig. 1, the displacements and 
widths of the peaks suggest a value ~___ 0.2. However, 
other patterns from material of the same nominal 
composition showed a wide range of apparent 0c values, 
usually smaller than this. The X-ray diffraction 
patterns used by Bless et al. (1972) for their structure 
analysis showed no signs of streaks or peak displace- 
ments (E. Kostiner, private communication). These 
authors did report the existence of the very weak k-odd 
reflections, visible in Fig. 1, which suggest a violation 
of the glide-plane symmetry, presumably associated 
with the partial occupancy of the Ge positions. 

From Fig. 5(b) and (c) it is seen that the relative 
intensities of the 001 and 002 reflections depend 
strongly on the occupancy factor r. Although the 
intensities of Fig. 1 are strongly affected by dynamical 
diffraction, the fact that the 002 is consistently equal 
to or less than the 001 and 003 reflections in intensity 
favors an r value of 0.35 or less. 

The comparison of curves calculated with and without 
the G contributions suggests that even for the very high 
value of ~ = 0.3, the contribution of the modification of 
structure at the fault to the peak intensities is very 
small, although away from the peaks the relative 

a=0"3 / 
r=0"5 It 

000 
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~.. / /  
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Fig. 5. Calculated variation of intensity along the 001 line for 
magnesium fluorogermanate, ignoring the f2 decrease in 
intensity with scattering angle. (a) The function D(u) of 
equation (1) with ~=0.2. (b) Calculated intensities for 
~=0.3 and occupancy factor r=0"50 for the germanium 
sites in the C layer. (c) Calculate intensities for ~=0"3, 
r=0.35. In (b) and (c) the full curves are drawn on the 
assumption that there is no modification of the structure at 
the faults, i.e. G=O. The dotted curves are drawn assuming 
the form of G(1) given in equation (4). 
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contribution of G to the intensities may be very large. 
This follows because in the expression (2), the factors 
which multiply [G[ 2, ( R e F ,  G) and ( I m F ,  G) all 
vanish for u .  R integral, i.e. at the reciprocal-lattice 
points for the unfaulted structure. The peak intensities 
can be modified by the factors dependent on G only 
to the extent that the peaks are displaced or extended 
away from the reciprocal-lattice points into the region 
for which these multipliers are non-zero. Since both 
the peak widths and their displacements are roughly 
proportional to ~ it is seen that the contribution of G 
to the peak intensities may also be roughly propor- 
tional to a but will be negligibly small except for very 
large a values. 

Hence the 'intuitively obvious' conclusion that the 
structure amplitudes for the unit cell will be modified 
from F to F +  ~G is shown to be false. In the particular 
case of magnesium fluorogermanate, the existence of 
faults of the type discussed should not make any 
appreciable difference to the value of the occupancy 
factor r for the Ge sites deduced from the structure 
analysis. 

It is seen from equation (2) and Fig. 5 that informa- 
tion regarding the nature of the modification of the 

structure at the fault planes can, in principle, be ob- 
tained from the diffraction pattern but this would 
involve the careful measurement and interpretation of 
the intensities of the weak streaks between the main 
intensity maxima. 

The author is grateful to Dr Peter Kunzmann for 
supplying Fig. 1 and for discussion of possible forms 
of the faults; to Dr E. Kostiner for supplying samples 
used for subsequent diffraction and microscopy and 
discussion of the results, and to Dr Sumio Iijima who 
took Fig. 3 and many other fine pictures. Work sup- 
ported by NSF Grant GH-36668. 
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A conditional joint probability distribution is derived in order to estimate the values of the cosine 
invariant cos (gh + ~Pk + ~Pl -- ~h + k+ ~) in terms of the magnitudes of Eh, Ek, El, Eh + k, Eh + l, Ek+ l, Eh + k + 1. 
The theory leads to values for the cosines which lie anywhere between - 1 and + 1. Some applications 
of the quartets in procedures for crystal structure determination are described. 

I. Derivation of the theory 

1.1 Introduction 
The significance in direct methods of phase deter- 
mination of the cosine invariant cos (~h + ~Pk + ~ - -  
~0h+k+a) has been stressed in several recent papers. 

Starting from semi-empirical observations of Schenk 
(1973a), Hauptman (1974a) has developed in P1 a 
probabilistic theory of this cosine invariant which is 
valid under the assumption that [ E  h + k[, [Eh + 1], [Ek + I I a r e  
sufficiently small. In particular he derived the negative 
cosine invariant expression 

COS ((~h AV ~k _]_ (~l __ ~h  + k+ 1) ~ I I ( B )  
I0¢B)' 

where B=2lEhEkEiEh+k+l[/N. For large values of 
B this formula gives, in contrast to the estimate for 

COS ((/7hl Av ~h 2 - -  ~h  1 + h2), 

~h  "31- (/Ok "31" ~1 - -  ~ h +  I~q- 1 ~'  7~ . 

A more general probabilistic theory of the invariant 
COS(~Th-[-( /Tk"]-~Pl--~h+k+l) ,  subject to no restrictive 
conditions, has been given by Hauptman (1974b). The 
theory leads to estimates for the value of the cosine 
which may lie anywhere between - 1 and + 1. In that 
paper the joint conditional probability distribution of 
the pair (~k,~hl+k given IE-h3+k[,lgkl,lEhl+kl and for 
fixed hi and h3 was inspected. The vector k is the sole 
random variable, which is supposed uniformly 
distributed over reciprocal space. Hauptman's results 
seem satisfactory, but the final formulae are rather 
difficult to deal with. 

Independently, Giacovazzo (1975a) derived in PT 
probabilistic formulae for c o s  ((/7 h-']- (~k -[- ~91-- ~ h + k + l ) "  


